A PREDICTIVE CODING PERSPECTIVE ON OSCILLATORY TRAVELING WAVES

Andrea Alamia – CerCo, CNRS Lausanne, December 2024

> andrea.alamia@cnrs.fr https://artipago.github.io/

European Research Council Established by the European Commission

PREDICTIVE CODING IN SHORT

Mumford 1992, Rao & Ballard 1999, Friston 2009, Huand & Rao 2011, Spratling 2017...

- Higher regions generate predictions to explain sensory input.
- **Prediction-errors** update predictions over time.
- The brain fully represents the incoming sensory information.

THE SIMPLEST PC MODEL

200ms

SIMPLE MODEL RESULTS

A MULTI-LAYER PC MODEL

MULTI-LAYER MODEL RESULTS

- y_i have an oscillatory
 behavior (no need to
 compute the IRFs);
- Oscillations are TRAVELLING WAVE,

propagating **FORWARD** or **BACKWARD** depending on the cognitive state of the system.

A MORE PLAUSIBLE MODEL

WAVES IN REAL DATA

QUANTIFYING WAVES DIRECTION

TRAVELING WAVES AND VISUAL PERCEPTION

Turning the Stimulus On and Off Changes the Direction of α Traveling Waves

[®]Zhaoyang Pang (症兆阳),¹ [®]Andrea Alamia,¹ and [®]Rufin VanRullen^{1,2}

eNeuro

Zhaoyang Pang

Pang Z., Alamia A, VanRullen R (2020)

ALPHA WAVES AND VISUAL PERCEPTION

WAVES AND PREDICTIVE CODING

WAVES AND PREDICTIVE CODING

R. Carhart-Harris C. Timmermann

N,*N*-Dimethyltryptamine (DMT)

"[..] psychedelics work to relax the precision of high-level priors or beliefs, thereby liberating bottom-up information flow, particularly via intrinsic sources such as the limbic system."

Carhart-Harris and Friston (2019)

Alamia A., Timmermann C., Nutt DJ., VanRullen R., Carhart-Harris R. (2020)

WAVES AND PSYCHEDELICS

R. Carhart-Harris C. Timmermann

N,*N*-Dimethyltryptamine (DMT)

Alamia A., Timmermann C., Nutt DJ., VanRullen R., Carhart-Harris R. (2020)

• PSYCHEDELICS MODULATE WAVES •

Despite participants had closed eyes, DMT alters cortical activity, as during visual stimulation.

D. Gordillo M. Herzog

Hypothesis: alteration in the priors? (Friston et al 2014, 2016, Fogelson 2014, Sterzer 2018, Tarasi et al. 2022, ...)

Opposite to DMT's study predictions, should we observe a decrease in FW waves and increase in BW waves?

Alamia*, Gordillo*,..., Herzog (2024)

WAVES IN SCHIZOPHRENIA

WAVES IN SCHIZOPHRENIA

N = 121 (patients); N = 75 (control)

Vernier visual task.

N = 121 (patients); N = 75 (control)

Find a way to test directly this fascinating hypothesis that TW reflect
 Predictive Coding processes (with modeling & experiments).

EXPERIMENTAL DESIGN: STATISTICAL LEARNING

Participants performed 15 blocks of 70 shapes each. The target changes every 18 shapes.

Martina Pasqualetti

Measured variables:

- Behavioral (RT and Scores)
- Pupil size
- EEG (TW)

Pasqualetti & Alamia (in preparation)

MANIPULATING PROBABILITIES

26

MANIPULATING PROBABILITIES

Hypothesis I:
 Increase in BW waves with predictability.

Entropy (non Predictability)

MANIPULATING PROBABILITIES

H = 0.8570

5

5 47.5 47.5

47.5

Δ

 \diamond

47.5 47.5

47.5 47.5

5

47.5

5

H = 1.0977

	·	\odot	Δ	\diamond
•	×	33	33	33
\odot	33	×	33	33
A	33	33	×	33
\Diamond	33	33	33	×

• *Hypothesis II*:

Increase in FW waves with the rare transition (i.e., the Prediction Error).

LEARNERS vs NON-LEARNERS

We split participants based on how much they use the regularities. *Learning index (LI)* : RT(rare) – RT(expected)

Behavioral results (N=30). Participants learn explicitly the regularities.

BW waves increase before stimuls onset, FW waves after stimulus onset.

Hyp I : Sequence predictability doesn't modulate BW or FW waves (BF<0.3).

Hyp II : difference between rare and expected in FW waves.

TW AND THE CANNONBALL

Α

Nassar, Matthew R., Rasmus Bruckner, and Michael J. Frank. "Statistical context dictates the relationship between feedbackrelated EEG signals and learning." elife 8 (2019): e46975.

Matthew Nassar

Do TW reflect changes in the model? (i.e., changepoint vs oddball).

TW AND THE CANNONBALL

TW AND THE CANNONBALL

Considering oscillations as Travelling Waves help us understanding their role in different cognitive functions.

- Forward waves relate to visual stimulation.
- Backward waves reflect inhibition and attentional modulation.
- Both modulated by psychedelics drugs (DMT), and in Schizophrenia patients.
- Ongoing work to test their link with Predictive Coding.
- Ongoing work investigating travelling waves and Binocular Rivarly, Working Memory and computational mechanisms.

THANKS!!

Z.Pang

M.Herzog

R.Cart-Harris

L.MarieLouise

I.Schwenk

https://artipago.github.io/ andrea.alamia@cnrs.fr

NeuroAl team

2017-2024

Leslie Marie-Louise Jakob Schwenk Martina Pasqualetti Antoine Grimaldi Bhavin Choksi Sabine Muzellec **Pierre-Marie Matta** Ismail Khalfaoui Xiaoqi Xu **Benjamin Devillers**

Rufin VanRullen Tim Masquelier Victor Boutin Milad Mozafari Leopold Maytié Canhuang Luo Samson Chota Maria Carvalho Yifan Zeng

QUANTIFYING WAVES DIRECTION

Forward and backward waves related to visual stimulation.

Do waves correlate with pharmacological drugs (CPZ equivalent)? NOPE

Do waves correlate with positive symptoms? **NOPE**

Do waves correlate with negative symptoms? NOPE

 Mean field model showing FW and BW waves in a PC framework.

- Pulvinar modulates
 TWs, biasing FW and
 BW competition in favor of FW waves.
- Waves drive gammaband coherence and causality (mean field + spiking network).

PUPIL IN THE STATISTICAL LEARNING

[60 20] [47.5 5] [80 10] [90 5]

PUPIL DIAMETER

Pupil size dilates following surprising events (Alamia et. all, 2019)

— Shape — Shape — FW Less

> - FW More - BW Less

> - BW More

TW AND THE CANNONBALL

Alpha Power (1D-FFT)

SPECTRA OF TW

WAVES' SPECTRAL PROFILE

CORRELATING WAVES WITH POWER

Pearson		FW		BW	
r (BF ₁₀)		CONTRA	IPSI	CONTRA	IPSI
OCC.	CONTRA	-0.297	-0.350	0.720	0.698
		(0.549)	(0.697)	(28.519)	(19.503)
	IPSI	-0.305	-0.342	0.786	0.746
		(0.566)	(0.669)	(116.990)	(47.512)
FRONT.	CONTRA	-0.222	-0.252	0.772	0.712
		(0.422)	(0.465)	(84.225)	(24.645)
	IPSI	-0.327	-0.354	0.747	0.705
		(0.625)	(0.710)	(48.448)	(21.841)

RESULTS – EVENT ANALYSIS I

TW AND THE CANNONBALL

Summary:

- Alpha-band FW waves seem to increase during model update
- FW and BW TW correlate with *model update* and *prediction-error, but interpretation may not be in line with our hypothesis.*

To explore:

- Confirm results with another method to compute waves (e.g., phase plane fitting);
- Replicate in other datasets with similar tasks:
 - Do TW encode the 'variability' of the model? (the spread of the cannonball target area).
 - □ What if in the same block we have OD and CP?