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PREDICTIVE CODING IN SHORT

• Higher regions generate
predictions to explain
sensory input.

• Prediction-errors update 
predictions over time.

• The brain fully represents
the incoming sensory
information.
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Mumford 1992, Rao & Ballard 1999, Friston 2009, 
Huand & Rao 2011, Spratling 2017…



THE SIMPLEST PC MODEL
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200ms

~15ms

Alamia & VanRullen (2019)



SIMPLE MODEL RESULTS

5 Alamia & VanRullen (2019)



A MULTI-LAYER PC MODEL

6 Alamia & VanRullen (2019)



MULTI-LAYER MODEL RESULTS
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FW

BW

TIME [s]

TIME [s]

WITH INPUT :

WITHOUT INPUT :

○ 𝑦𝑖 have an oscillatory
behavior (no need to 
compute the IRFs);

○ Oscillations are  
TRAVELLING WAVE, 

propagating FORWARD or 
BACKWARD depending on 
the cognitive state of the 
system.

Alamia & VanRullen (2019)



A MORE PLAUSIBLE MODEL
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Three layers model of the cortex. 

Two pathways: infragranular (IG) and the “Predictive 
Coding” one (as in previous model). 

Jakob

Schwenk

Schwenk & Alamia (2024)



WAVES IN REAL DATA
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How can we
quantify waves’ 

direction?



QUANTIFYING WAVES DIRECTION
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TRAVELING WAVES AND VISUAL 
PERCEPTION
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Pang Z., Alamia A, VanRullen R (2020)

Zhaoyang Pang



ALPHA WAVES AND VISUAL 
PERCEPTION
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WAVES AND PREDICTIVE CODING
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WAVES AND PREDICTIVE CODING
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WAVES AND PSYCHEDELICS
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N,N-Dimethyltryptamine (DMT)

“ [..] psychedelics work to relax the precision of 

high-level priors or beliefs, thereby liberating 
bottom-up information flow, particularly via intrinsic 
sources such as the limbic system.” 

Carhart-Harris and Friston (2019)

Alamia A., Timmermann C., Nutt DJ., 
VanRullen R., Carhart-Harris R. (2020)

R. Carhart-Harris C. Timmermann



WAVES AND PSYCHEDELICS
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N,N-Dimethyltryptamine (DMT)

Alamia A., Timmermann C., Nutt DJ., 
VanRullen R., Carhart-Harris R. (2020)

R. Carhart-Harris C. Timmermann



PSYCHEDELICS MODULATE WAVES
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Despite participants 
had closed eyes, DMT 

alters cortical 
activity, as during
visual stimulation. 



WAVES IN SCHIZOPHRENIA
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Opposite to DMT’s study
predictions, should we

observe a decrease in FW
waves and increase in BW

waves?

Hypothesis: alteration in the 
priors? (Friston et al 2014, 2016, Fogelson

2014, Sterzer 2018, Tarasi et al. 2022, …)

Alamia*, Gordillo*,…, Herzog (2024)

D. Gordillo M. Herzog



WAVES IN SCHIZOPHRENIA
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N = 121 (patients);    N = 75 (control)

Sterzer 2018, Corlett 2019



WAVES IN SCHIZOPHRENIA
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N = 121 (patients);    N = 75 (control)



WAVES IN SCHIZOPHRENIA
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Vernier visual task.



WAVES IN SCHIZOPHRENIA
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N = 121 (patients);    N = 75 (control)



GOING FURTHER
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○ Find a way to test directly this fascinating hypothesis that TW reflect
Predictive Coding processes (with modeling & experiments).



EXPERIMENTAL DESIGN: 
STATISTICAL LEARNING
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Martina
Pasqualetti

• Behavioral (RT and Scores) 
• Pupil size
• EEG (TW) 

Measured variables: 

Pasqualetti & Alamia (in preparation)

Participants performed 15 blocks of 70 shapes each. The target 
changes every 18 shapes. 



MANIPULATING PROBABILITIES
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𝐻 = 0.3944 𝐻 = 0.6309 𝐻 = 0.8570 𝐻 = 0.9503 𝐻 = 1.0977

𝐻 = −𝑃 𝑥 log𝑃 𝑥



MANIPULATING PROBABILITIES

𝐻 = 0.3944 𝐻 = 0.6309 𝐻 = 0.8570 𝐻 = 0.9503 𝐻 = 1.0977

Entropy (non Predictability)

○ Hypothesis I:

Increase in BW waves with
predictability.



MANIPULATING PROBABILITIES

𝐻 = 0.3944 𝐻 = 0.6309 𝐻 = 0.8570 𝐻 = 0.9503 𝐻 = 1.0977

○ Hypothesis II:

Increase in FW waves with the 
rare transition (i.e., the 
Prediction Error).



LEARNERS vs NON-LEARNERS

We split participants based on how much they use the regularities. 

Learning index (LI) : RT(rare) – RT(expected)

Median
Median

Martina
Pasqualetti



TW DURING STATISTICAL 
LEARNING

Behavioral results (N=30). Participants learn explicitly the regularities.
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TW DURING STATISTICAL 
LEARNING
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BW waves increase before stimuls onset, FW waves after stimulus onset.

Time
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Pasqualetti



TW DURING STATISTICAL 
LEARNING

Conditions
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Hyp I : Sequence predictability doesn’t modulate BW or FW waves (BF<0.3).

Martina
Pasqualetti



TW DURING STATISTICAL 
LEARNING

Conditions

w
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es
[d

B]

Hyp II : difference between rare and expected in FW waves.

MORE LESS

*
* * *

* *

Martina
Pasqualetti

Difference
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*BF>3 



TW AND THE CANNONBALL

Nassar, Matthew R., Rasmus 

Bruckner, and Michael J. Frank. 

"Statistical context dictates the 

relationship between feedback-

related EEG signals and 

learning." elife 8 (2019): e46975.

Matthew Nassar

Do TW reflect changes in the 
model? (i.e., changepoint vs 
oddball).



TW AND THE CANNONBALL
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TW AND THE CANNONBALL
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CONCLUSIONS
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Considering oscillations as Travelling Waves help us understanding
their role in different cognitive functions.

• Forward waves relate to visual stimulation.
• Backward waves reflect inhibition and attentional modulation.

• Both modulated by psychedelics drugs (DMT), and in 
Schizophrenia patients.

• Ongoing work to test their link with Predictive Coding.

• Ongoing work investigating travelling waves and Binocular
Rivarly, Working Memory and computational mechanisms.
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QUANTIFYING WAVES DIRECTION
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BW

FW



CORRELATING FW AND BW WAVES
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Forward and backward waves related to visual stimulation.



WAVES IN SCHIZOPHRENIA
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Do waves correlate between datasets?  



WAVES IN SCHIZOPHRENIA

42

Do waves correlate with pharmacological drugs (CPZ equivalent)?   

Do waves correlate with negative symptoms?   

Do waves correlate with positive symptoms?   



PROJECT STRUCTURE
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Jakob Schwenk

○ Mean field model 
showing FW and BW
waves in a PC 
framework.

○ Pulvinar modulates
TWs, biasing FW and 
BW competition in favor
of FW waves. 

○ Waves drive gamma-
band coherence and 
causality (mean field + 
spiking network).



PUPIL IN THE STATISTICAL 
LEARNING

[60 20]   [47.5 5]   [80 10]   [90 5]



PUPIL DIAMETER

N = 3145

INCREASED SEQUENCE 

RELIABILITY
DECREASED SEQUENCE 

RELIABILITY

[60 20]       [47.5 5]       [80 10]       [90 5]                   

Bayesian Repeated Measure ANOVA

MORE = BF10 = 271 *

LESS = BF10 = 0.48
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Pupil size dilates following surprising events (Alamia et. all, 2019)
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TW DURING STATISTICAL 
LEARNING



TW AND THE CANNONBALL
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SPEED OF TW
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SPECTRA OF TW
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WAVES’ SPECTRAL PROFILE
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CORRELATING WAVES WITH 
POWER

51

Pearson 

r (BF₁₀)

FW BW

CONTRA IPSI CONTRA IPSI
O

C
C

.

CONTRA -0.297 

(0.549)

-0.350 

(0.697)

0.720 

(28.519)

0.698 

(19.503)

IPSI -0.305 

(0.566)

-0.342 

(0.669)

0.786 

(116.990)

0.746 

(47.512)

F
R

O
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T
. CONTRA -0.222 

(0.422)

-0.252 

(0.465)

0.772 

(84.225)

0.712 

(24.645)

IPSI -0.327 

(0.625)

-0.354 

(0.710)

0.747 

(48.448)

0.705 

(21.841)



RESULTS – EVENT ANALYSIS I

52



TW AND THE CANNONBALL

Summary:

○ Alpha-band FW waves seem to increase during model update

○ FW and BW TW correlate with model update and prediction-error, but 
interpretation may not be in line with our hypothesis. 

To explore:

○ Confirm results with another method to compute waves (e.g., phase 
plane fitting);

○ Replicate in other datasets with similar tasks: 
□ Do TW encode the ‘variability’ of the model? (the spread of the 

cannonball target area).
□ What if in the same block we have OD and CP?
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