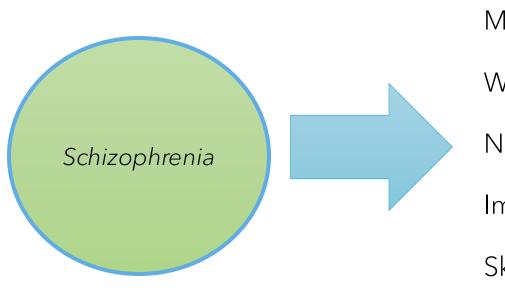


The EEG multiverse of schizophrenia

Dario Gordillo

EPFL/CHARITÉ UNIL-UNIPD Symposium 11.12.2024 The classic approach in schizophrenia research

Association of the nicotinic receptor α7 subunit gene (CHRNA7) with schizophrenia and visual backward masking


George Bakanidze¹*, Maya Roinishvili²³, Eka Chkonia³⁴, Werner Kitzrow¹, Sarina Richter¹, Konrad Neumann⁵, Michael H. Herzog⁶, Andreas Brand⁷ and Imke Puls¹

¹ Genetic Section, Department of Psychiatry and Psychotherapy, CCM, Charité University Medicine, Berlin, Germany

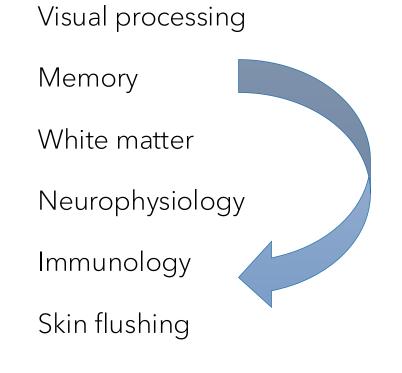
² Department of Behaviour and Cognitive Functions, I. Beritashvili Institute of Physiology, Tbilisi, Georgia

- ³ Institute of Cognitive Neurosciences, Agricultural University of Georgia, Tbilisi, Georgia
- ⁴ Department of Psychiatry, Tbilisi State Medical University, Tbilisi, Georgia ⁵ Institute of Biometry and Clinical Epidemiology, CCM, Charite University, Berlin, Germany
- ⁶ Laboratory of Psychophysics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- ² Center for Psychiatry and Psychotherapy, Klinikum Bremen-Ost, Bremen, Germany

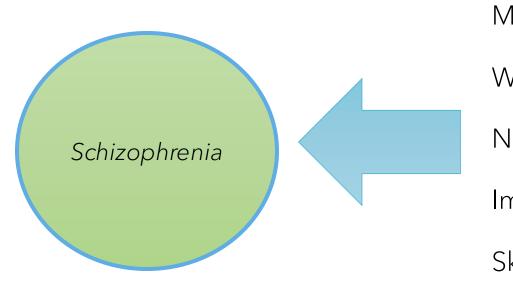
Chkonia et al., 2010, 2012; Plomp et al., 2015; Bakanidze et al., 2009; Herzog et al., 2004, 2013 Patients are impaired in many other domains...

Memory

White matter


Neurophysiology

Immunology


Skin flushing

How do these abnormalities relate with each other?

All these features point to a common underlying illness...

Visual processing

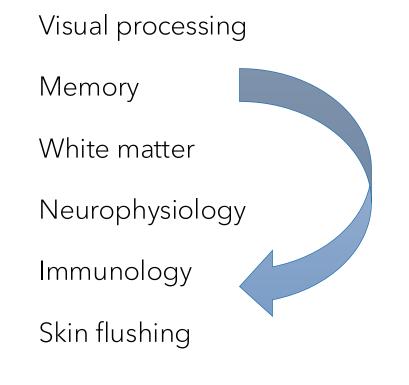
Memory

White matter

Neurophysiology

Immunology

Skin flushing


They should correlate...

Visual processing Memory White matter Neurophysiology Immunology Skin flushing

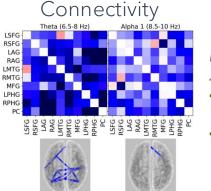
However, there are very few studies that have correlated deficits with each other...

Visual processing

Are there correlations between neurophysiological impairments in schizophrenia?

mmunology

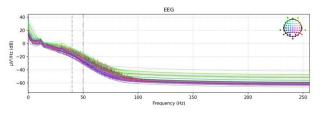
Skin flushing


Resting-state EEG is a versatile tool to investigate schizophrenia

Spontaneous brain activity is recorded for ~5min

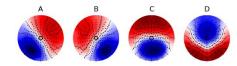
Electrodes

Time


Same data, several mechanisms for schizophrenia

Di Lorenzo et al., 2015; Andreou et al., 2018

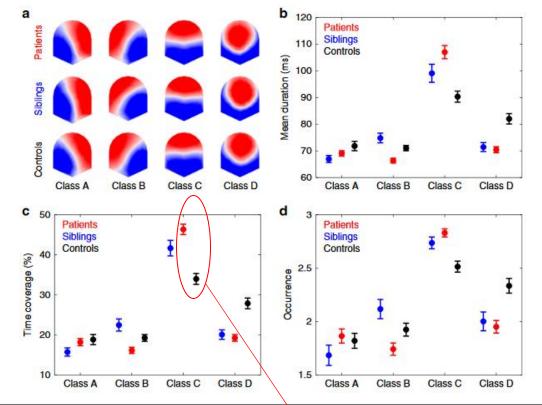
- Increased connectivity: <u>Impairments in</u> <u>neural inhibition</u>
- Decreased connectivity: <u>Impairments</u> in attentional processing


Spectral analysis

Venables et al., 2008

- Increased delta, theta, and alpha band activity: Impairments in dopaminergic function
- Increased activity in the beta band: <u>Cortical hyperexcitability</u>

EEG microstates


Rieger et al, 2016

- Impairments in attentional control
- <u>Genetic risk</u>

S

Electrode

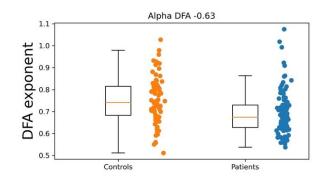
Time

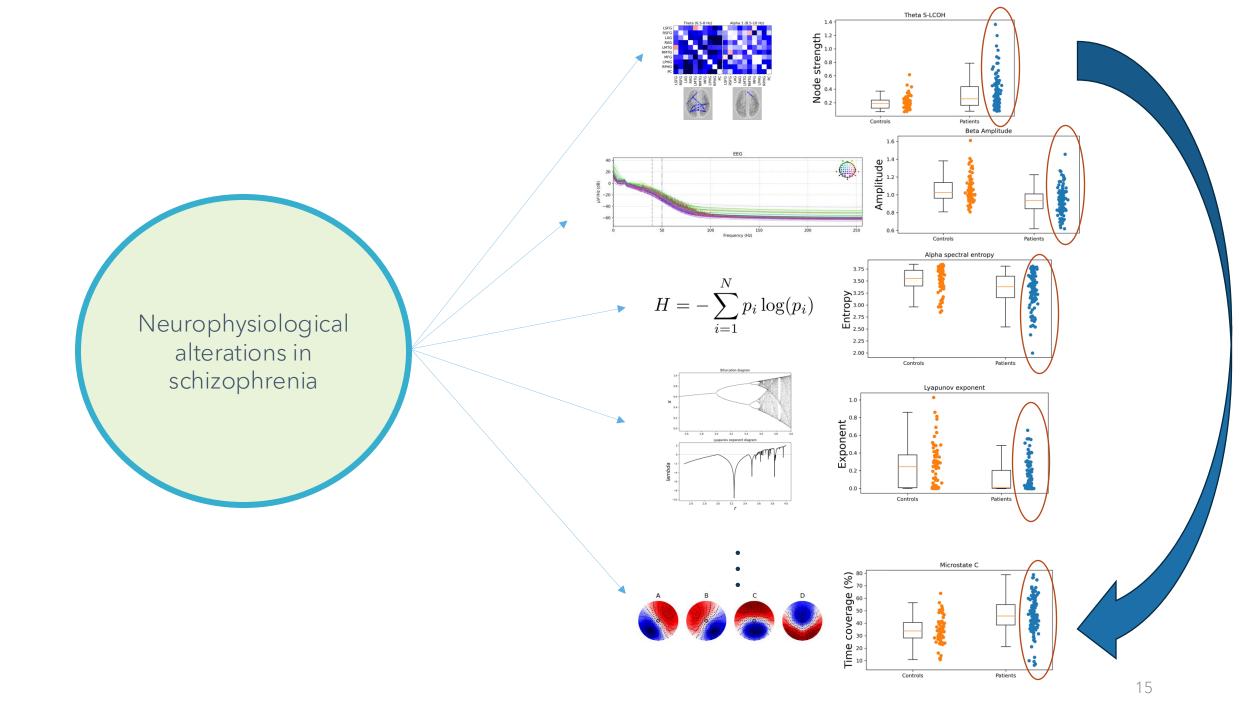
Parameter	Microstate	P	Phoim	d	95% CI
Mean duration	Class A	0.054	0.270	-0.293	[-0.593, 0.008]
	Class B	0.003	0.018	-0.454	[-0.756, -0.151]
	Class C	1.315e – 4	0.001	0.590	[0.284, 0.894]
	Class D	3.010e – 6	3.311e – 5	-0.732	[-1.039, -0.423]
Time coverage	Class A	0.449	0.898	-0.110	[-0.409, 0.189]
	Class B	0.074	0.296	-0.271	[-0.571, 0.029]
	Class C	1.452e – 7	1.742e – 6	0.827	[0.515, 1.137]
	Class D	3.445e – 6	3.445e – 5	-0.725	[-1.032, -0.416]
Occurrence	Class A	0.882	0.898	0.023	[-0.276, 0.322]
	Class B	0.112	0.336	-0.247	[-0.547, 0.053]
	Class C	1.170e – 4	0.001	0.602	[0.296, 0.907]
	Class D	1.620e – 4	0.001	-0.578	[-0.882, -0.272]

Post hoc pairwise group comparisons of EEG microstate dynamics of patients (n = 101) and controls (n = 75). p values refer to main effects of group following Group × Gender ANCOVAs with Education as a covariate; degrees of freedom (df) of the numerators are 1 and df for the denominators are 171. p_{holm} values refer to Bonferroni–Holm corrected p values for 12 comparisons (3 parameters × 4 classes). $\eta^{2/5}$ were converted to Cohen's d's. Statistically significant differences are indicated in bold.

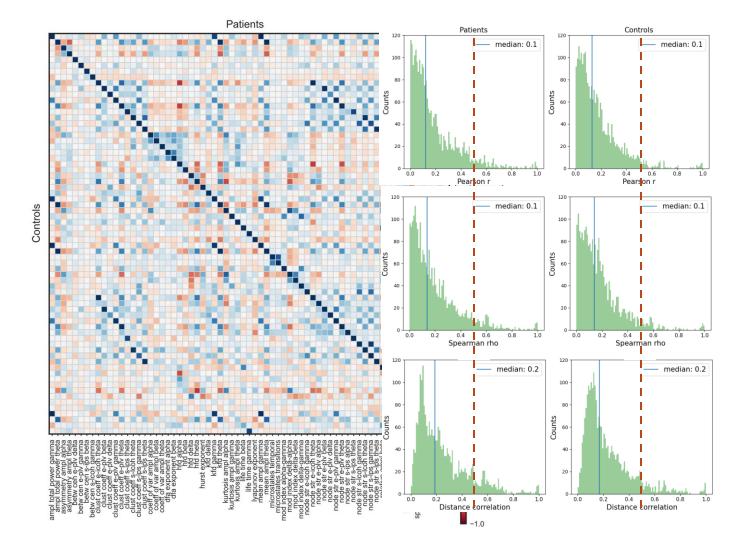
da Cruz et al., 2023

Methods

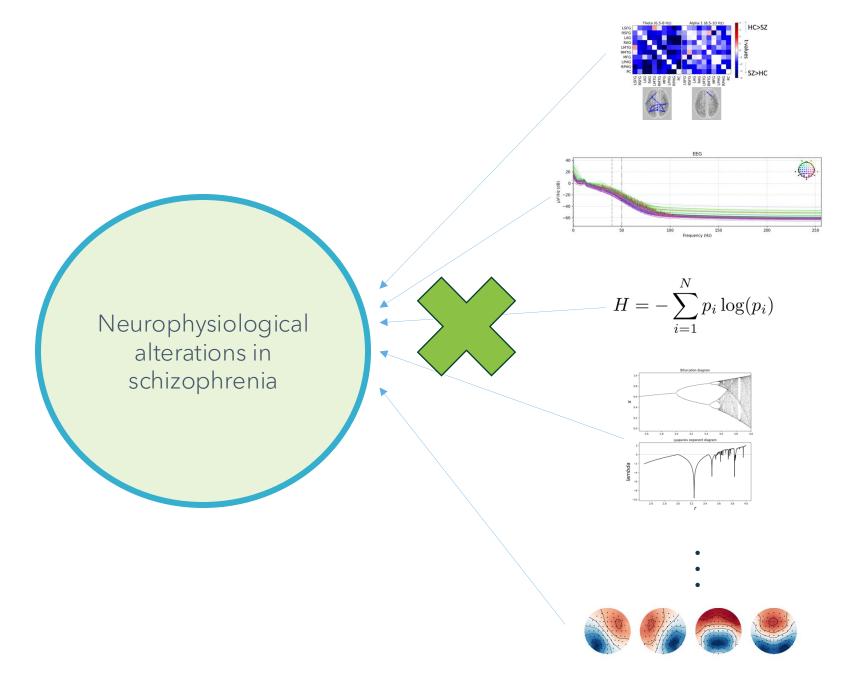

- Participants:
 - 121 patients with schizophrenia and 75 healthy controls
- EEG analysis:
 - We applied several analysis methods to the very same resting-state EEG data and obtained 194 EEG features (e.g., alpha band power)
- Statistical analysis:
 - Group comparisons
 - Correlation analysis


Results

69 out of 194 EEG features showed significant group differences


Cohen's *d* ranged from 0.5 to 1 Discriminability : 60 to 70%

A diverse set of features showed differences between patients and controls

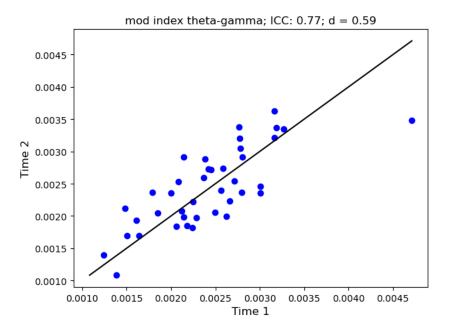


Same data, a range of candidate mechanisms, but low correlations

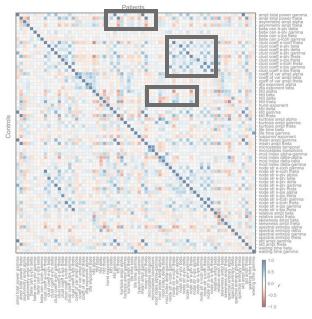

Patient 1: * Patient 2: *

Why significant group differences and low correlations?

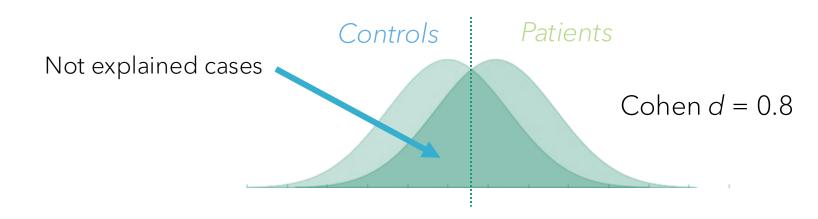
- Test-retest reliability
- Large effects are not so large
- Idiosyncratic measures
- Heterogeneity


Low test-retest reliability?

- If noise rules, there should not be correlations at all
- Previous studies show that some EEG features have adequate reliability:
 - Microstates (Khanna et al., 2014)
 - DFA exponents (Nikulin et al., 2004)
 - Spectral amplitudes and entropy measures (Gudmundsson et al., 2007)
 - ...


Many features are also remarkably stable even after several years

Patients (N=40)	ICCs
19 /82 (23%)	<0.4 (poor)
15 /82 (18%)	0.4 < ICC < 0.59 (fair)
36 /82 (44%)	0.6 < ICC < 0.75 (good)
12 /82 (15%)	ICC >0.75 (excellent)

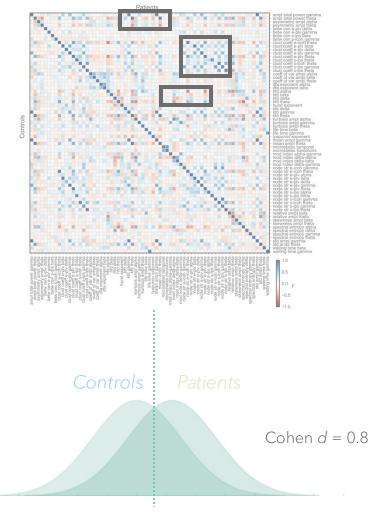


Why significant group differences and low correlations?

- Test-retest reliability
- Large effects are not so large
- Idiosyncratic measures
- Heterogeneity

Large effect sizes are not so large? : Cohen *d* and discriminability

- For a Cohen d of 0.8, the discriminability is 65%: 35% of the patients do not show the
 effect
- A discriminability of 80% corresponds to a Cohen *d* of 1.68

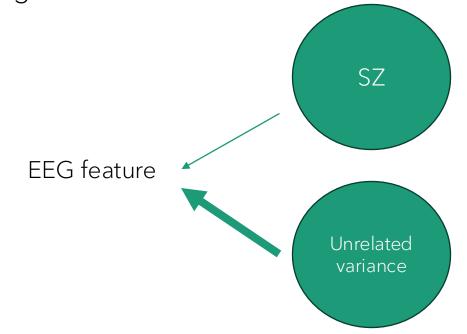

Large effect sizes are not so large? : Discriminability in other fields

- Visual masking ~72 %
- Memory ~70%
- Cortical thickness ~60%
- White matter ~58%
- Sensorimotor function ~60%
- Neurophysiology
 - ~66% P300
 - ~78% P50
 - ~63% N170

Aleman et al., 1999; Bramon et al., 2004; McCleery et al., 2015; Kelly et al., 2018; van Erp et al., 2018; San-Martin et al., 2020

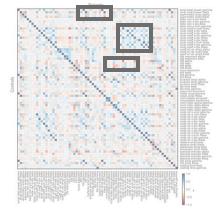
Why significant group differences and low correlations?

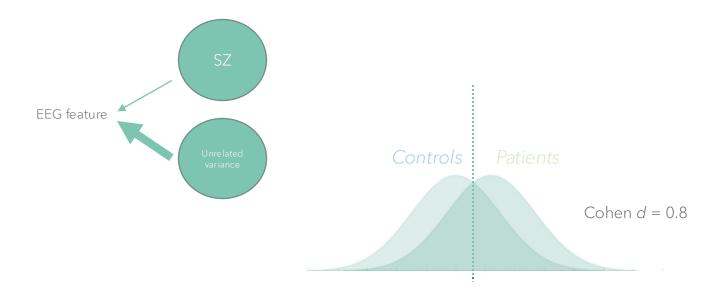
- Test-retest reliability
- Large effects are not so large
- Idiosyncratic measures
- Heterogeneity



Idiosyncratic measures?

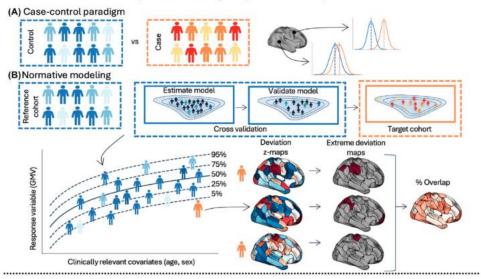
- The EEG features target a mechanism related with schizophrenia, but also other idiosyncratic aspects contributing to the variance
 - Comorbidities

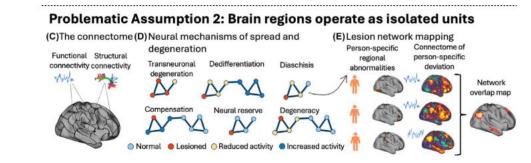

•


• By-products of the target mechanism

Why significant group differences and low correlations?

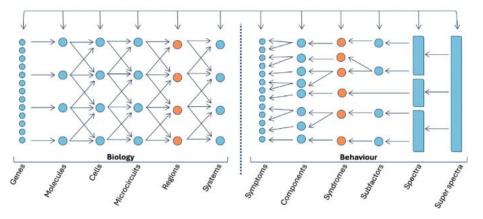
- Low test-retest reliability
- Large effects are not so large
- Idiosyncratic measures
- Heterogeneity





Heterogeneity

- Low correlations indicate multiple underlying factors
 - Different causes to the same disorder?
- What type of disorder is schizophrenia?
 - Additive?
 - Combinatorial?
- In this complex scenario, using one feature will have limitations


Problematic Assumption 1: The group mean is representative

Problematic Assumption 4: Diagnostic categories are the appropriate phenotypic resolution

(E) Multiscale many-to-many mapping

Problematic Assumption 3: One-to-one mapping

(A) One-to-one mapping (B) Many-to-one mapping (C) One-to-many mapping (D) Many-to-many mapping

0 0

Region	0	0	0	Region	0	0	0	9	Region	1	-10		1	Region	0	0	0	
Disorder			•	Disorder	1	>1			Disorder	6	0	VO	V	Disorde		YAK O	14	0

Conclusions

- Analyzing multiple features can help identify contributing factors to complex disorders
- There is not a single factor that explains neurophysiological deficits in schizophrenia
- Within subject studies can help understanding complexity
- Low correlations might indicate multiple causes
- Both approaches are needed to understand schizophrenia

Acknowledgements

Janir Ramos da Cruz

Eka Chkonia and Maya Roinishvili Andreas Brand

Michael Herzog

Thanks for your attention